If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+24x-256=0
a = 9; b = 24; c = -256;
Δ = b2-4ac
Δ = 242-4·9·(-256)
Δ = 9792
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9792}=\sqrt{576*17}=\sqrt{576}*\sqrt{17}=24\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-24\sqrt{17}}{2*9}=\frac{-24-24\sqrt{17}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+24\sqrt{17}}{2*9}=\frac{-24+24\sqrt{17}}{18} $
| -2(r-4)=-16-4 | | 6(x+6)=4(3x-2) | | 24+0.12x=0.16x | | 117+v=12 | | 0.24y-0.64=3.86 | | 7y-1=3y+13 | | j+4.97=8.83 | | 4x-2(x-4=-2+5x+1 | | 6x+16x+-4x=-18 | | 44=4-(3x-5) | | 0.8=z-1/5 | | 5x-7=1+5x | | 6(x+6)=44(3x-2 | | (3x+3)(5x-2)=180 | | 6u=4u+9 | | (3x+9)+(x-11)=180 | | 10+3m=-5m-6 | | 4x1x=21 | | 0.25b-10=2.5b+b | | x/x+5=10/2 | | –2q+–10=10 | | 1X+0.25y=12 | | 12-12x=-6-14x | | X+0.25y=12 | | 4n+6=4+3n | | 8d–11+3d+2=13 | | 1/x+5=3/4x-6 | | 3x+15+2x-12+2x+2=180 | | 6f+2=56 | | a–6=14 | | 9x+6=-13 | | 10+3m=5m-6 |